首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
航空   14篇
航天技术   12篇
航天   11篇
  2020年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   9篇
  2008年   3篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有37条查询结果,搜索用时 250 毫秒
11.
We report a Nobeyama Radioheliograph (NoRH) microwave observation of a propagating feature of non thermal emission in a solar flare. The flare had a very extended source well resolved by NoRH. In the rising phase of the microwave burst, a non-thermal gyrosynchrotron source was observed by the high-rate (10 images per second) observations to propagate from one end of the loop to the other with a speed of 9 × 104 km s−1. We interpret this non-thermal propagating source is emitted from streaming electrons.  相似文献   
12.
The gradual commercial utilization and application of the results of government-led space development programmes is a natural development. In Japan private sector involvement goes further than this because the government budget for space development is very limited. To remain competitive in an increasingly international market Japan now needs to develop a partnership between government and private enterprise to construct a system and structure that will directly benefit the public, otherwise the necessary support for space development will not be attained.  相似文献   
13.
Space Science Reviews - In this chapter, we review the contribution of space missions to the determination of the elemental and isotopic composition of Earth, Moon and the terrestrial planets, with...  相似文献   
14.
The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time.  相似文献   
15.
We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations.  相似文献   
16.
We report on the luminosity dependent change of the cyclotron resonance energy obtained from a transient X-ray pulsar, 4U 0115+63. Using RXTE data observed on 1999 March, we found that the fundamental resonance energy stayed constant (11 keV) when the source luminosity was above 5 × 1037 erg s−1. As the luminosity decreased below 5 × 1037 erg s−1, the fundamental resonance energy gradually increased up to 16 keV at 0.16 × 1037 erg s−1. The luminosity dependence of the resonance energy can be understood by the change of the accretion column height.  相似文献   
17.
The combination of large membranes and light-weight deployable booms, often called a gossamer structure, has enabled innovative space missions, such as solar sailing, to become possible. Though many designs have been proposed and demonstrated, two problems remain regarding the folding patterns of the membranes. The first problem involves considering the thickness of a membrane to enable uniform and compact folding. The other involves membrane-folding patterns that allow for connecting the membrane to the booms at multiple points and deploying them together while minimizing the use of complex mechanisms. This study proposes three methods that consider the thickness, and two of them can keep the crease lines straight, in contrast to the conventional non-straight crease line solutions. In addition, this study derives one effective design to integrate a membrane with diagonal booms through the systematic classification of existing membrane folding patterns.  相似文献   
18.
使用面包板模型和仿真方法,在实验室内研究月球指向就位测量望远镜(ILOM)的基本特征,如望远镜星像中心点位置精度、温度效应、倾斜以及地面震动的影响。使用这个技术预期在月球表面观测月球自转时可以达到1ms的精度。将在地面上开展测试验证观测以全面评价达到优于0.1″观测精度目标所需条件和特征。  相似文献   
19.
The remote sensing of precipitation, especially rain by the spaceborne weather radar is an important subject which has not been realized. The system design and examination of the spaceborne weather radar which is called as the spaceborne microwave rain-scatterometer are performed by considering user's requirements to observe rain, the restrictions derived from the interface with satellite and the state of the art and the possibility of spaceborne microwave technology. Characteristic parameters for spaceborne microwave rain-scatterometer are determined based on the user's requirements for the system. Functions and performances of each subsystem (antenna, transmitters, receivers and data transmission processor) with the detailed block diagram of the total system of spaceborne microwave rain-scatterometer are shown. All of the critical items of hardware in the development of spaceborne microwave rain-scatterometer are also discussed.  相似文献   
20.
The SELENE Laser Altimeter (LALT) is designed to map the Moon’s topography and will be launched in summer 2007. LALT incorporates Q-switched Cr doped Nd:YAG laser (1064 nm) with an output energy of 100 mJ and 1 Hz repetition frequency for about one year mission period. The laser pulse travels to the Moon’s surface and reflections from the surface are detected by a silicon avalanche photo-diode. The ranging distance is 50–150 km with about 5 m accuracy. Several corrections for accurate ranging data are investigated. The flight hardware has been qualified and passed all the integration tests. A principal goal of the LALT instrument is to obtain a much more detailed lunar topographic map which is superior in global coverage, measurement accuracy and number of data points to previous observations and models. The overall science objectives of LALT are (1) determination of lunar global figure, (2) internal structure and surface processes, (3) exploration of the lunar pole regions, and (4) reduction of lunar occultation data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号